

Wirkungsvolle Maßnahmen zur Sanierung sozialer Wohnungsbauten -Retrofit of social houses

Energy Solutions

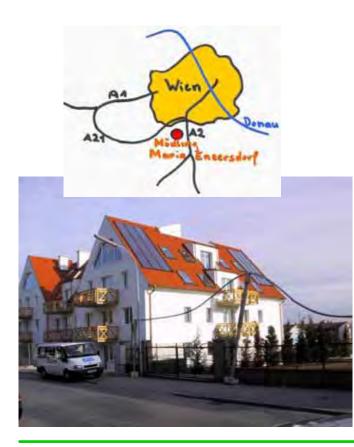
for cities and communities November 7th 2008 Eurogress Aachen

Social housing in A HOLISTIC

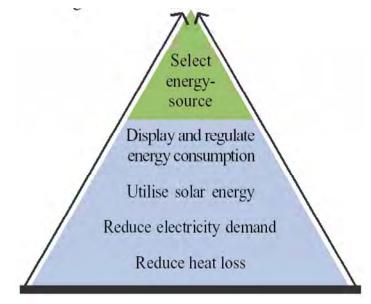
By not going too much into details it seems that you need a HOLISTIC approach...

• In our understanding HOLISTIC is "whole that is more than the sum of the parts" (Oxford English Dictionary)

HOLISTIC - Mödling HOLISTIC

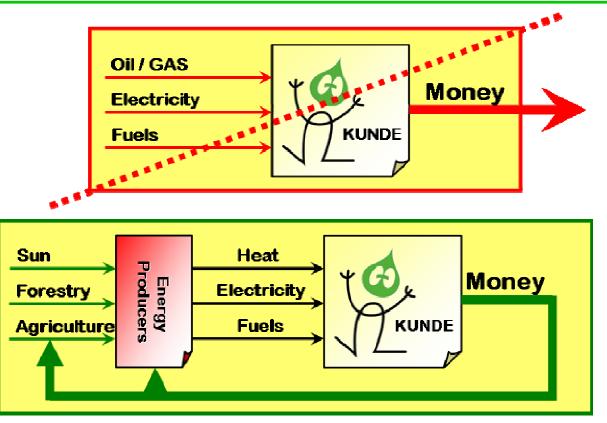


The Site


- Community Mödling is 16km to the South of Vienna.
- Around 23,000 inhabitants.
- 12,000 households on an area of 10km².
- Half of the community is covered by pines.
- Commercial business and services.

The mission

Source: Rødsjg Husbanken


- To advance to a climatic protection region.
 To foster local energy supply and to implement energy efficiency measures on short-term.
- To achieve the self-sustaining energy system on the long-run.

The intension

Source: Reinhard Koch

Source: Solar4you

In five years of project duration...

- 15% renewables.
- 10% energy savings.
- 11% Emission savings per

HOLISTIC is a project of the CONCERTO initiative co-funded by the European Commission under the Framework Programme

year.

Social housing

Two performed actions regarding social houses are presented in detail ...

T - Mobile thermal imager
for conducting qualitative
and quantitative analysis.
R - Retrofitting the building
environment.

	1		14,6°C - 7,7°C 0,8°C
Analysed Outside wall	Temp.	Comment	
-12.5 -10.0 -7.5 *C	5.3 °C	New Glazing	
	13.6 °C	Old window	
	8.5 °C	Outside wall	
	9.5 °C	Plinth brickwork]
0 25 50 75	7.8 °C	Outside wall	

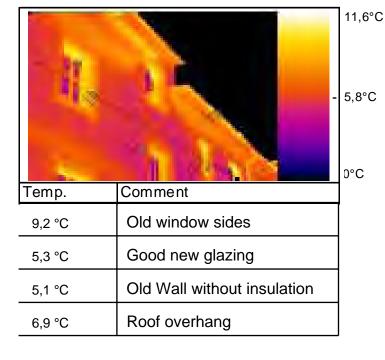
The following analysis functions are used...

• Spot temperature and temperature table. • Profile and histogram.

T – Jakob Thoma Stra HOLISTIC

	A R H	
	+	
Temp.	Comment	
5.3 °C	New Glazing	
13.6 °C	Old window	
8.5 °C	Outside wall	
9.5 °C	Plinth brickwork	
7.8 °C	Outside wall	

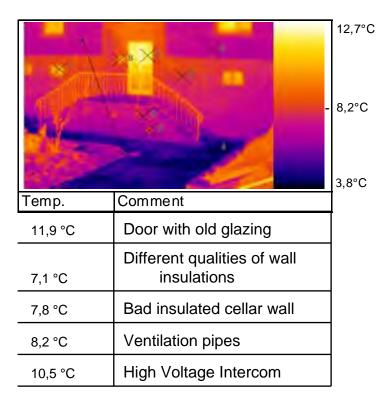
- ^{14,6°C}The identified weakest points of the building are ...
 - Old windows
- ^{7,7°C}• Bad wall insulations
 - Bad insulated cellar walls


^{0,8°C} Resulting into recommended actions...

- New windows
- Better wall insulations of upper floors
- Better insulations of the cellar wall

T – Jakob Thoma Str

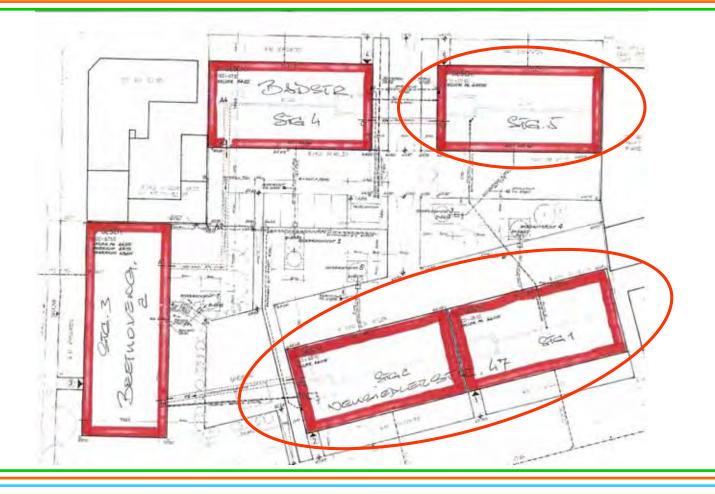
- ^{°C} The identified weakest points of the building are ...
 - Old windows
 - No wall insulation
 - Bad dormer walls
 - Heat bridges at the roof overhang


Resulting into recommended actions ...

- New windows
- Better wall insulations of upper floors
- Insulations of the dormer walls
- Insulations of the roof overhang

T – Jakob Thoma Ste HOLISTIC

The identified weakest points of the building are ...


- Old windows
- Different qualities of wall insulations
- Bad insulated main door

Resulting into recommended actions...

- New windows
- Better wall insulations of upper floors
- Better insulations of the cellar wall
- New main door

The performed measures are ...

- Minimization of heat losses, insulated envelope with U-values between 0.16 and 0.27 W/m2K
- Installation of new windows with a total k-value between 1.26 W/m^{2*}K and 1.53 W/m^{2*}K
- Insulation of the roof 0.14 W/m²*K, of the cellar roof 0.21 W/m²*K, of in between roofs 1.36 W/m²*K
- Heat energy demand per m² of total used conditioned floor area:

• 32.06 kWh/m^{2*}a

Various insulation measures are implemented such as ...

• Exterior wall with 10 cm EPS (Expanded Polystyrene) on washed-out concretes / polystyrene / ferroconcretes or Exterior wall with 10 cm EPS on OSB (Oriented Strand Board) / mineral wool /

plaster

• Cellar/garage roofs with 15cm Prottelith (concrete enveloped EPS) on ferroconcretes

• Roofmates with 20cm XPS (Extruded Polystyrene) on bitumen binder

Step-by step realisation of the energy efficiency measures started in May 2008 and include particularities regarding integrating building users ...

- Communication flow / quality assurance debates on weekly meetings.
- Its costs and schedule are advertised and discussed with 2 representatives.
- Distribution and intermediation among all involved parties.
- Few building users complain particular delays, most of them seems satisfied as requested structural damages in the construction are repared.

Conlusions

Added value beyond minimising energy costs ...

- Save heating energy and green house gas emissions
- Improved indoor climate (better air quality, sound insulation, heat insulation)
- Increased social well being and health
- Reduced CO2-concentration inside the building (especially in bed room)
- Enhanced property value
- Increased urban living standard / city image

